Transforming Growth Factor-β–Induced Cross Talk Between p53 and a MicroRNA in the Pathogenesis of Diabetic Nephropathy

نویسندگان

  • Supriya D. Deshpande
  • Sumanth Putta
  • Mei Wang
  • Jennifer Y. Lai
  • Markus Bitzer
  • Robert G. Nelson
  • Linda L. Lanting
  • Mitsuo Kato
  • Rama Natarajan
چکیده

Elevated p53 expression is associated with several kidney diseases including diabetic nephropathy (DN). However, the mechanisms are unclear. We report that expression levels of transforming growth factor-β1 (TGF-β), p53, and microRNA-192 (miR-192) are increased in the renal cortex of diabetic mice, and this is associated with enhanced glomerular expansion and fibrosis relative to nondiabetic mice. Targeting miR-192 with locked nucleic acid-modified inhibitors in vivo decreases expression of p53 in the renal cortex of control and streptozotocin-injected diabetic mice. Furthermore, mice with genetic deletion of miR-192 in vivo display attenuated renal cortical TGF-β and p53 expression when made diabetic, and have reduced renal fibrosis, hypertrophy, proteinuria, and albuminuria relative to diabetic wild-type mice. In vitro promoter regulation studies show that TGF-β induces reciprocal activation of miR-192 and p53, via the miR-192 target Zeb2, leading to augmentation of downstream events related to DN. Inverse correlation between miR-192 and Zeb2 was observed in glomeruli of human subjects with early DN, consistent with the mechanism seen in mice. Our results demonstrate for the first time a TGF-β-induced feedback amplification circuit between p53 and miR-192 related to the pathogenesis of DN, and that miR-192-knockout mice are protected from key features of DN.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Recombinant fibromodulin has therapeutic effects on diabetic nephropathy by down-regulating transforming growth factor-β1 in streptozotocin-induced diabetic rat model

Objective(s):Diabetic nephropathy is an important long-term complication of diabetes mellitus which appears to be partially mediated by an increase in secretion of transforming growth factor-β (TGF-β). Fibromodulin, the small leucine-rich proteoglycan, has been proposed to be the potent TGFβ1 modulator. In this study, the therapeutic effects of recombinant adenoviral vectors expressing fibromod...

متن کامل

Effect of Cysteine on Transforming Growth Factor β1 as the Main Cause of Renal Disorder in a Rat Model of Diabetic Nephropathy

​Background and purpose: Glycation products, oxidative stress, and inflammation contribute to the development of diabetic nephropathy (DN) due to the elevation of transforming growth factor-β1 (TGF-β1). This study aimed at investigating the effect of Cysteine (Cys) on TGF-β in DN rat model. Materials and methods: In this experimental study, 40 male Wistar rats were randomly divided into four g...

متن کامل

Assessment of Oral Glycine and Lysine Therapy on Receptor for Advanced Glycation End Products and Transforming Growth Factor Beta Expression in the Kidney of Streptozotocin-Induced Diabetic Rats in Comparison with Normal Rats

Background & Aims: Today, diabetic nephropathy is considered to be one of the most common causes of end stage renal disease. Uncontrolled hyperglycemia, and consequently, production of advanced glycation end products activate pathways which play key roles in diabetic nephropathy. Among these pathways, high expression of receptor for advanced glycation end products (RAGE) and transforming growth...

متن کامل

Antioxidant, anti-apoptotic, and protective effects of myricitrin and its solid lipid nanoparticle on streptozotocin-nicotinamide-induced diabetic nephropathy in type 2 diabetic male mice

Objective(s): The present study evaluates the protective effects of myricitrin and its solid lipid nanoparticle (SLN) on diabetic nephropathy (DN) induced by streptozotocin-nicotinamide (STZ-NA) in mice. Materials and Methods: In this experimental study, 108 adult male NMRI mice were divided into 9 groups: control, vehicle, diabetes, dia...

متن کامل

Connective tissue growth factor antagonizes transforming growth factor-β1/Smad signalling in renal mesangial cells.

The critical involvement of TGF-β1 (transforming growth factor-β1) in DN (diabetic nephropathy) is well established. However, the role of CTGF (connective tissue growth factor) in regulating the complex interplay of TGF-β1 signalling networks is poorly understood. The purpose of the present study was to investigate co-operative signalling between CTGF and TGF-β1 and its physiological significan...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 62  شماره 

صفحات  -

تاریخ انتشار 2013